organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-3-(4-Fluorophenyl)-1-(3-hydroxy-phenyl)prop-2-en-1-one

Ray J. Butcher,^a Jerry P. Jasinski,^b* B. Narayana,^c K. Lakshmana^c and H. S. Yathirajan^d

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 16 July 2007; accepted 17 July 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.046; *wR* factor = 0.145; data-to-parameter ratio = 24.6.

In the title molecule, $C_{15}H_{11}FO_2$, the 3-hydroxyphenyl and 4fluorophenyl groups are coplanar with each other and also with the plane of the prop-2-en-1-one linkage. Crystal packing is stabilized by intermolecular $O-H\cdots O$ hydrogen bonding between the hydroxyl H atom and the prop-2-en-1-one O atom, which links the molecules into a chain along the [010] direction.

Related literature

For related structures, see: Butcher *et al.* (2006); Yathirajan *et al.* (2006, 2007); Fischer *et al.* (2007); Harrison *et al.* (2006). For related literature, see: Carlo *et al.* (1999); Fichou *et al.* (1988); Goto *et al.* (1991); Uchida *et al.* (1998); Zhao *et al.* (2000); Sarojini *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{11}FO_2\\ M_r = 242.24\\ \text{Monoclinic, } P2_1/n\\ a = 7.4149 \ (4) \ \text{\AA}\\ b = 11.3162 \ (6) \ \text{\AA}\\ c = 14.7472 \ (8) \ \text{\AA}\\ \beta = 104.311 \ (6)^\circ \end{array}$

Data collection

Oxford Diffraction Gemini R diffractometer $V = 1199.01 (11) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.10 mm^{-1} T = 203 K 0.59 \times 0.47 \times 0.31 mm

Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) $T_{\min} = 0.643, T_{\max} = 1.000$ (expected range 0.942–0.970) 16754 measured reflections 4038 independent reflections 1916 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ 2 standard reflections every 50 reflections intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	164 parameters
$vR(F^2) = 0.145$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
038 reflections	$\Delta \rho_{\min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^i$	0.83	1.91	2.7013 (13)	159
Symmetry code: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.				

Data collection: *CrysAlisPro* (Oxford Diffraction, 2007); cell refinement: *CrysAlisPro*; data reduction: *CrysAlisPro*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

KL thanks Mangalore University for the use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2418).

References

- Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.
- Carlo, G. D., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337– 353.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn. J. Appl. Phys. 27, 429–430.
- Fischer, A., Yathirajan, H. S., Sarojini, B. K., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, 02832.
- Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.
- Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o3251–o3253.
- Oxford Diffraction (2007). *CrysAlisPro* (Version 171.31.8) and *CrysAlis RED* (Version 1.171.31.8). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.
- Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini & Bolte, M. (2007). Acta Cryst. E63, 0428–0429.
- Yathirajan, H. S., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, 05923–05924.
- Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513– 1517.

supplementary materials

Acta Cryst. (2007). E63, o3586 [doi:10.1107/81600536807034964]

(2E)-3-(4-Fluorophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one

R. J. Butcher, J. P. Jasinski, B. Narayana, K. Lakshmana and H. S. Yathirajan

Comment

Chalcones are known for their anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities. Among several organic compounds reported for non-linear optical (NLO) properties, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. We have synthesized a new chalcone, the title compound. In view of the importance of the title compound, its crystal structure is reported here.

The 3-hydroxyphenyl and 4-fluorophenyl groups of the title molecule (Fig. 1) are coplanar [dihedral angle = $3.11 (8)^{\circ}$] with each other and also with the propyl-2-ketone group, forming torsion angles C8—C9—C10—C11 and C8—C7—C1—C6 of 4.9 (2)° and $-1.75 (18)^{\circ}$, respectively.

Intermolecular O—H…O hydrogen bonding interactions (Table 1) involving the hydroxyl group and the carbonyl O atom link the molecules into a chain along the [0 1 0] direction (Fig. 2).

Experimental

To a mixture of 1-(3-hydroxyphenyl)ethanone (1.36 g, 0.01 mol) and 4-fluoroacetophenone (1.38 g, 0.01 mol) in ethanol (20 ml), a solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring. The mixture was stirred at room temperature for 6 h. The solid that precipitated was filtered off and washed with cold ethanol, dried and recrystallized from ethanol. X-ray quality crystals were obtained from ethyl acetate by slow evaporation (yield: 80%; m.p. 408–09 K). Analysis found: C 74.30, H 4.51%; $C_{15}H_{11}ClO_2$ requires: C 74.37, H 4.58%.

Refinement

All H atoms, except H1, were found in a difference map. But all H atoms were refined using a riding model with O—H = 0.83 Å and C—H = 0.94 Å, and with $U_{iso}(H) = 1.19-1.20 U_{eq}(C,O)$. Owing to the poor diffraction quality of the crystal, the ratio of observed to unique reflections is low (47%).

Figures

Fig. 1. Molecular structure of the title compound, showing atom labelling and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound, viewed down the *a* axis. Dashed lines indicate O—H···O hydrogen bonds.

$(2E) \hbox{-} 3-(4-Fluorophenyl) \hbox{-} 1-(3-hydroxyphenyl) prop-2-en-1-one$

Crystal data	
C ₁₅ H ₁₁ FO ₂	$F_{000} = 504$
$M_r = 242.24$	$D_{\rm x} = 1.342 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5107 reflections
a = 7.4149 (4) Å	$\theta = 4.8 - 32.5^{\circ}$
<i>b</i> = 11.3162 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.7472 (8) Å	T = 203 K
$\beta = 104.311 \ (6)^{\circ}$	Prism, colourless
$V = 1199.01 (11) \text{ Å}^3$	$0.59 \times 0.47 \times 0.31 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Gemini R diffractometer	$R_{\rm int} = 0.042$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 32.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 4.8^{\circ}$
T = 203 K	$h = -11 \rightarrow 11$
φ and ω scans	$k = -16 \rightarrow 17$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$l = -21 \rightarrow 22$
$T_{\min} = 0.643, \ T_{\max} = 1.000$	2 standard reflections
16754 measured reflections	every 50 reflections
4038 independent reflections	intensity decay: none
1916 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0687P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$

4038 reflections

$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \ e \ {\rm \AA}^{-3}$

164 parameters

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	Uiso*/Ueq
F	0.53494 (15)	0.34667 (10)	-0.46126 (6)	0.0827 (4)
01	0.71674 (13)	0.81902 (9)	0.33109 (6)	0.0491 (3)
H1	0.6731	0.8786	0.3507	0.059*
O2	0.83919 (12)	0.53556 (8)	0.10376 (6)	0.0449 (3)
C1	0.65119 (16)	0.70409 (10)	0.09520 (8)	0.0318 (3)
C2	0.71346 (16)	0.71937 (11)	0.19185 (8)	0.0339 (3)
H2A	0.7999	0.6658	0.2270	0.041*
C3	0.65035 (17)	0.81164 (12)	0.23650 (8)	0.0360 (3)
C4	0.52401 (19)	0.89189 (12)	0.18486 (9)	0.0436 (3)
H4A	0.4812	0.9555	0.2148	0.052*
C5	0.4616 (2)	0.87745 (13)	0.08907 (10)	0.0488 (4)
H5A	0.3759	0.9317	0.0543	0.059*
C6	0.52293 (19)	0.78494 (12)	0.04362 (9)	0.0426 (3)
H6A	0.4790	0.7762	-0.0215	0.051*
C7	0.72278 (15)	0.60043 (10)	0.05300 (8)	0.0321 (3)
C8	0.65602 (16)	0.57558 (11)	-0.04758 (8)	0.0327 (3)
H8A	0.5600	0.6220	-0.0841	0.039*
C9	0.72904 (16)	0.48853 (11)	-0.08792 (9)	0.0347 (3)
H9A	0.8244	0.4445	-0.0485	0.042*
C10	0.67813 (16)	0.45384 (11)	-0.18606 (9)	0.0344 (3)
C11	0.54868 (19)	0.51720 (12)	-0.25370 (9)	0.0427 (3)
H11A	0.4933	0.5852	-0.2358	0.051*
C12	0.5007 (2)	0.48226 (14)	-0.34577 (10)	0.0523 (4)
H12A	0.4133	0.5252	-0.3908	0.063*
C13	0.5838 (2)	0.38287 (15)	-0.37027 (10)	0.0522 (4)
C14	0.7107 (2)	0.31840 (14)	-0.30732 (11)	0.0514 (4)
H14A	0.7654	0.2508	-0.3263	0.062*
C15	0.75793 (18)	0.35409 (12)	-0.21479 (10)	0.0418 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H15A	0.8454	0.3101	-0.1	706 0.0	050*	
Atomic disp	placement parameter	$rs(\AA^2)$				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
F	0.1133 (9)	0.0953 (8)	0.0383 (6)	0.0028 (7)	0.0166 (5)	-0.0175 (5)
01	0.0562 (6)	0.0548 (6)	0.0317 (5)	-0.0022 (5)	0.0020 (4)	-0.0099 (4)
02	0.0462 (5)	0.0447 (5)	0.0384 (5)	0.0093 (4)	0.0005 (4)	0.0028 (4)
C1	0.0304 (6)	0.0350 (6)	0.0298 (6)	-0.0055 (5)	0.0069 (5)	0.0015 (5)
C2	0.0295 (6)	0.0384 (7)	0.0308 (6)	-0.0058 (5)	0.0020 (5)	0.0010 (5)
C3	0.0350 (7)	0.0418 (7)	0.0300 (7)	-0.0106 (5)	0.0057 (5)	-0.0054 (5)
C4	0.0456 (8)	0.0418 (8)	0.0424 (8)	0.0012 (6)	0.0093 (6)	-0.0070 (6)
C5	0.0557 (9)	0.0475 (8)	0.0388 (8)	0.0148 (7)	0.0030 (6)	0.0024 (6)
C6	0.0470 (8)	0.0464 (8)	0.0316 (7)	0.0058 (6)	0.0046 (6)	0.0023 (6)
C7	0.0288 (6)	0.0336 (6)	0.0335 (6)	-0.0046 (5)	0.0067 (5)	0.0035 (5)
C8	0.0306 (6)	0.0360 (7)	0.0311 (6)	-0.0016 (5)	0.0066 (5)	0.0018 (5)
С9	0.0304 (6)	0.0378 (7)	0.0354 (7)	-0.0016 (5)	0.0073 (5)	0.0030 (5)
C10	0.0285 (6)	0.0377 (7)	0.0382 (7)	-0.0057 (5)	0.0104 (5)	-0.0024 (5)
C11	0.0442 (7)	0.0459 (8)	0.0382 (8)	0.0042 (6)	0.0103 (6)	-0.0012 (6)
C12	0.0578 (9)	0.0619 (10)	0.0345 (8)	0.0037 (8)	0.0062 (7)	0.0031 (7)
C13	0.0629 (10)	0.0619 (10)	0.0328 (8)	-0.0047 (8)	0.0140 (7)	-0.0086 (7)
C14	0.0573 (9)	0.0512 (9)	0.0497 (9)	0.0007 (7)	0.0209 (7)	-0.0149 (7)
C15	0.0388 (7)	0.0414 (8)	0.0455 (8)	0.0003 (6)	0.0107 (6)	-0.0030 (6)

Geometric parameters (Å, °)

F—C13	1.3635 (16)	C7—C8	1.4700 (17)
O1—C3	1.3622 (15)	C8—C9	1.3330 (17)
O1—H1	0.83	C8—H8A	0.94
O2—C7	1.2348 (14)	C9—C10	1.4564 (17)
C1—C2	1.3962 (16)	С9—Н9А	0.94
C1—C6	1.4009 (17)	C10—C15	1.3884 (18)
C1—C7	1.4861 (17)	C10-C11	1.3989 (18)
C2—C3	1.3766 (18)	C11—C12	1.3739 (19)
C2—H2A	0.94	C11—H11A	0.94
C3—C4	1.3890 (18)	C12—C13	1.373 (2)
C4—C5	1.3832 (18)	C12—H12A	0.94
C4—H4A	0.94	C13—C14	1.359 (2)
C5—C6	1.379 (2)	C14—C15	1.3825 (19)
С5—Н5А	0.94	C14—H14A	0.94
С6—Н6А	0.94	C15—H15A	0.94
C3—O1—H1	109.5	С9—С8—Н8А	119.4
C2—C1—C6	118.83 (11)	С7—С8—Н8А	119.4
C2—C1—C7	117.59 (11)	C8—C9—C10	127.49 (12)
C6—C1—C7	123.58 (11)	С8—С9—Н9А	116.3
C3—C2—C1	121.10(11)	С10—С9—Н9А	116.3
С3—С2—Н2А	119.4	C15-C10-C11	117.91 (12)
C1—C2—H2A	119.4	C15—C10—C9	119.80 (12)

O1—C3—C2	117.18 (11)	C11—C10—C9	122.28 (12)
O1—C3—C4	123.05 (12)	C12—C11—C10	121.45 (13)
C2—C3—C4	119.77 (12)	C12—C11—H11A	119.3
C5—C4—C3	119.51 (13)	C10-C11-H11A	119.3
С5—С4—Н4А	120.2	C13—C12—C11	118.18 (14)
С3—С4—Н4А	120.2	C13—C12—H12A	120.9
C6—C5—C4	121.25 (13)	C11—C12—H12A	120.9
С6—С5—Н5А	119.4	C14—C13—F	118.79 (14)
С4—С5—Н5А	119.4	C14—C13—C12	122.68 (13)
C5—C6—C1	119.53 (12)	F—C13—C12	118.53 (14)
С5—С6—Н6А	120.2	C13—C14—C15	118.74 (14)
С1—С6—Н6А	120.2	C13—C14—H14A	120.6
O2—C7—C8	120.57 (11)	C15—C14—H14A	120.6
O2—C7—C1	118.94 (11)	C14—C15—C10	121.04 (13)
C8—C7—C1	120.49 (10)	C14—C15—H15A	119.5
С9—С8—С7	121.27 (11)	C10—C15—H15A	119.5
C6—C1—C2—C3	0.27 (18)	C1—C7—C8—C9	174.75 (11)
C7—C1—C2—C3	-178.49 (11)	C7—C8—C9—C10	-179.81 (10)
C1—C2—C3—O1	179.23 (10)	C8—C9—C10—C15	-174.46 (12)
C1—C2—C3—C4	-0.65 (19)	C8—C9—C10—C11	4.9 (2)
O1—C3—C4—C5	-179.26 (12)	C15—C10—C11—C12	0.2 (2)
C2—C3—C4—C5	0.6 (2)	C9-C10-C11-C12	-179.18 (12)
C3—C4—C5—C6	-0.2 (2)	C10-C11-C12-C13	-0.2 (2)
C4—C5—C6—C1	-0.2 (2)	C11—C12—C13—C14	0.0 (2)
C2-C1-C6-C5	0.15 (19)	C11—C12—C13—F	179.08 (13)
C7—C1—C6—C5	178.82 (13)	F-C13-C14-C15	-178.96 (12)
C2—C1—C7—O2	-3.07 (16)	C12—C13—C14—C15	0.1 (2)
C6—C1—C7—O2	178.24 (11)	C13—C14—C15—C10	-0.1 (2)
C2—C1—C7—C8	176.94 (10)	C11-C10-C15-C14	-0.10 (19)
C6—C1—C7—C8	-1.75 (18)	C9—C10—C15—C14	179.32 (12)
02—C7—C8—C9	-5.25 (18)		
Hydrogen-bond geometry (A	ĥ, °)		

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1···O2 ⁱ	0.83	1.91	2.7013 (13)	159

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2.

0°C4

C5

C15

σ

C12

Ω

C14

C13

F

